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We study a model for a two-dimensional random interface ~(x), x E R  2, 
described by a massless Gaussian measure perturbed by a weak potential 
V(q~) = (e2/2)(e -=~-  1)-'. Such a model occurs, for instance, in a phenomeno- 
logical description of the wetting transition. We prove that, provided ct is small 
enough, the two-point function decreases exponentially with a rate of order 
m-~ eet, which is just the mean-field value. The large-field-region problem due to 
the fact that V(~b) remains bounded when ~--* + ~  is treated by means of a 
large-field versus small-field expansion combined with elementary Sobolev 
inequalities. The paper is intended to be accessible to nonexperts. 

KEY WORDS: Cluster expansions; large-field/small-field decomposition; 
Sobolev inequalities; wetting transition. 

1. I N T R O D U C T I O N  

A f u n d a m e n t a l  difficulty in statist ical  mechanics  a n d  const ruct ive  field 
theory  is to per form the t h e r m o d y n a m i c  l imit  in a ma thema t i ca l l y  r igorous  
way. In  stat ist ical  mechan ics  the existence of  such a l imit s imply 
cor responds  to the extensivi ty of t h e r m o d y n a m i c  potent ia l s  such as the 
pressure,  the free energy,  a n d  so on. In field theory,  it proves  in the n o n -  
trivial cases the existence of  n o n - G a u s s i a n  t r ans l a t i on - inva r i an t  measures  
on  some d i s t r ibu t ion  spaces. O n e  of  the me thods  to con t ro l  this l imit  is the 
cluster  expans ion .  I t  is basical ly per tu rba t ive ,  bu t  al lows for very general  
types of  in te rac t ions  a n d  gives detai led i n fo rma t ion  a b o u t  the l imi t ing 
theory,  in  con t ras t  with n o n p e r t u r b a t i v e  methods ,  such as cor re la t ion  
inequali t ies.  Let us briefly recall the set t ing in field theory  when  no 
r eno rma l i za t i on  is needed. O n e  is given a G a u s s i a n  measure  dpc(r with 
covar iance  C on  a space of  d i s t r ibu t ions ,  e.g., 6a ' (R") ,  and  a funct ional  
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F.~C~b] depending only on the field in the volume A c ~". Usually FA is 
assumed to have some factorization properties, for example, F A = ]-I~ = A F~, 
where the A's are squares covering A. The problem then is to control the 
I A I ~  limit of the free energy fA=lAl-~logZ(A),  where Z ( A ) -  

dllc(~p) FA[Cb]. The cluster expansion is an expansion in the volume for 
Z(A). More precisely, Z(A) is written as a finite sum of contributions 
associated with each partition of the volume A into disjoint subsets Xj, 
each Xj being a collection of squares ,J c A. The contribution to a given 
partition factorizes over the subsets Xj. The sets Xj are called clusters or 
polymers. The factors z(Xj) associated with a given polymer represent its 
activity. So basically the cluster expansion is a rewriting of the partition 
function Z(A) as a system of polymers Xj interacting through a hard-core 
exclusion. The standard algebraic machinery of Mayer series c~l therefore 
allows one to write a formal power series in the activities z(Xj) for the free 
energy f = l i m ~ j _ ~ ,  fA in the thermodynamic limit. The hard work really 
begins with showing that Iz(~)l is small enough for this series to converge 
toward fi To be a little bit more specific, consider the case where F~--- 
exp(-2Va[q~]) ,  where V~[q~] is some potential. There are two ways in 
which Iz(Xj)l should be small. First Iz(Xj)l has to become exponentially 
small with the volume IXjl occupied by the polymer Xj. One necessary con- 
dition for this is that 121 be small enough. Second, Iz(Xj)l must become 
small whenever the squares LJ comprising Xj are far apart from each other. 
From the explicit formula for the activity one can show that a sufficient 
condition for this is that the propagator C(x,y) decays sufficiently fast at 
infinity. Actually, integrability at infinity is enough. An example satisfying 
this condition is the free field of mass m > 0  for which C(x,y)<~ 
C e x p ( - m  Ix-yl),  C > 0  as Ix-y l  ~ ~.  

In this paper we want to study a model in which a two-dimensional 
massless Gaussian measure is perturbed by a weak potential. We choose 
VA[f b] =JA V(~b(x))dx with V(~b)=(e2/2)(e - ~ -  1) 2. Notice that for 
I~bl~  -~ we have the quadratic approximation V(ck)'-,m'-ck'-/2, where 
m =ect. The main point about V(O~) is that it remains bounded when 
~b ~ +oo. Hence the interacting measure will be effectively massless in the 
regions where the field is large and positive. This is actually the major 
source of difficulty and interest for this model. Recall that the massless 
propagator is not integrable, therefore a naive cluster expansion will not 
work. Actually the kernel of the covariance is not even defined in two 
dimensions in the infinite-volume limit. There are three reasons for 
choosing this particular V. 

1. The V above appears in a phenomenological description of the 
wetting transition. ~2.3~ The field ~b(x) corresponds, for example, to the 
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height of a liquid/vapor interface above a wall. V(~b) is a weak potential 
which tends to localize the interface near the wall. If  we put Dirichlet 
boundary conditions on 0A, the massless Gaussian measure is defined by 
the covariance Co.A = ( - -Ao)  -~ and just penalizes high curvatures of the 
interface ~b. A diect computation shows that Co, A(x, x ) ~  log IAI; hence we 
expect that in the thermodynamic limit (~b (x )2 )V"-~ 'O"0  a s  e--*0. This 
phenomenon is supposed to describe how a liquid/vapor interface 
delocalizes as the temperature T approaches from below the critical wetting 
temperature 7",,,. One can identify e with T , . -  T >  0. ~4) 

2. The particular form of the V chosen above seems to be well suited 
for a multiscale analysis, which would allow us to control the model out- 
side the mean-field regime where the mass is equal to cte. We shall not deal 
with these questions here; see, however, Section 2. 

3. Finally, V(~b) is a simple example for which a large-field versus 
small-field decomposition is needed. Many of the most interesting models 
in constructive field theory (non-Abelian gauge theories, ~5~ two-dimen- 
sional Gross-Neuveu models ~6)) or many-body theory (BCS theory of 
supraconductivity) require a similar treatment. 

Our aim is to prove that, at least in some regime of the parameters ct 
and e, the potential V(q~) generates a mass m ' =  O(m); in other words, we 
want to prove that the connected two-point functions satisfy 

I(~b(x) r  v -  (q~(x)) , , ( r  ,,I ~< Ce .... 'rx-:,~ 

To show this, we first have to find good definitions for what is meant 
by small- and large-field regions. Then we must show that big large-field 
regions, in which there is no exponential decay of the correlations, are rare. 
That this is true can be understood intuitively as follows. Take a square 
A c A (whose size will have to be chosen properly), and suppose ~b is large 
in mean on A. There are just two possibilities: either ~b is more or less con- 
stant on A, in which case e x p ( -  Va[~b]) is small, or this last factor is not 
small, but in that case ~b necessarily has a large mean curvature and thus 
exp[ - �89 ~a(V~b) 2] dx is small. This is where the Sobolev inequalities enter, 
They allow us to treat this alternative in a natural and efficient way, These 
inequalities replace a sustantial part of the very heavy formalism of refs. 7 
and 8. As an input for the Sobolev inequalities we need to extract a factor 

1 exp[ -- ~ ~ (V~b) 2] dx per square in the large-field regions from a "locally 
massless" non-translation-invariant Gaussian measure. This is a technically 
nontrivial problem which could have applications in other contexts. It is 
solved by means of some operator inequalities. 
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The paper is organized as follows. In Section 2 we describe mathemati- 
cally the model we want to study and state our main result. Section 3 
shows how to generate a cluster expansion with small- versus large-field 
decomposition. To generate this expansion, we make an easy adaptation 
from the Brydges-Kennedy formula in ref. 9. Its main advantage is its 
compactness and that it avoids the pain of going through many recursive 
formulas. A polymer X in this new cluster expansion will be a collection of 
squares {A}}~'~ and large-field regions {y}~!x~. In Section 4 we bound the 
activities z(X) and prove the convergence of the cluster expansion. The last 
section contains the proof of two crucial propositions. The first uses 
Sobolev inequalities to show that in the large-field region the product 
exp(-V~[~b])  exp[- /~ ,~(V~)2 dx] is very small if ~ is small. The second 
shows how to extract the factor e x p [ - � 8 9  ~ (Vq~)2dx] from the locally 
massless Gaussian measure which appears in the expression for the activities. 
Proofs are given in detail, even when the arguments are rather standard. 
This makes the paper a little bit longer, but, I hope, more readable for 
people who are, like me, beginners in the cluster expansion business. 

2. DEFINITION OF THE MODEL 

In this section we define mathematically the model of random interface 
we want to study. For each A c II~ 2 we define a probability measure 
dpA, v(~b) on the space of tempered distributions ~b ~ ~ ' (R2) .  The measure 
dpA ' v(~b) will be constructed as a perturbation of a Gaussian measure dpA,o 
which is massless inside A by some very flat potential V(q~). It turns out 
that dpA.v(~b) will actually be supported on C ~' functions because of the 
rapid decrease of the Fourier transform of the covariance; see (2.5) below. 
For V we choose 

1 -2~,+ ( e -~*- - l )2=  + V(~b) (2.1) V((~) ~ 2  --e -=~ + ~ e  = ~ -  2 

where m -= ea. We shall always assume a < 1. For any A = R-" we also define 
the two functionals 

V,,[~b] - f V(ck(x)) dx (2.2) 
A 

PAE~b] --~,_. V(~(x)) dx (2.3) 

Using Taylor's remainder formula, we have 

1 
1 "~ ~ . t 3  [ V(~b) = ~e-~cq~ Jo (1 - t)2(e - ~ ' ~ - 4 e  -2~'~) dt (2.4) 
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Fig. 1. The functions V and ft. 

The functions V and V are plotted in Fig. 1. 
Let us now define the free measure dl2A. o. It is constructed as follows. 

Take the massive translation-invariant measure dFlc(qb) with the expected 
mass m whose covariance is given by 

e --p21h- 
1 ~fn eO,.~.,._.,.~(p)dp, with ~(p)  p 2 + m  2 (2.5) C(x'Y)-(2~) 2 : 

then define 

dflA.O(~)=~exP [ �89 ! m2~b2(x) d.x'] dflc(~)) (2.6) 

The exponential factor just kills the mass inside A and leaves a massive 
field outside A. The reason for the somewhat strange boundary conditions 
is that they nicely fit the cluster expansion formalism below. The parameter 
h" is an ultraviolet cutoff. In the context of a wetting model, the field would 
only be defined on the points of a 7 2 lattice and the free measure would 
look like 

e x p ( -  ~ [~b(x)-~(Y)]  2) 1-I ddp(x) (2.7) 
: r  ~ 2 +x'E .~ r~ Z 2 

Ix--Yl = 1 

In order that d/~a.o be a good approximation to this lattice measure, we 
should take the parameter x equal to 1. However, as was mentioned in the 
introduction, this model seems to be well suited for a multiscale analysis, 
which would allow us to control the model outside yhe mean-field regime. 
We hope to be able to report on progress in this direction soon. For the 
moment let us just mention that such an analysis starts with a decomposi- 
tion of the propagator C into contributions from different "frequency 
slices. ''tt~ Following a renormalization group strategy, one would integrate 
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out degrees of freedom of higher frequencies until the ultraviolet cutoff, 
initially equal to 1, is brought down to a value close to the infrared cutoff 
given by the expected mass m 2. Having this in mind; we shall choose 
K = m2~ 1. The rest of this paper can therefore be considered as the first 
step in a multiscale analysis, namely the study of the effective model 
obtained after all higher-frequency modes have been integrated out. 

The partition function and n-point functions are defined in the usual 
way by 

Z(A)-- f e-VAt~ dpA.O(q~)= f e-eAt*l dpc(ek) (2.8) 

and 

(ok(x ,)- . .  r ) A. v - Z (A)  - '  f r ) . . .  r e -  v,,t,~ d,u.,,, o(,/,) 

= Z ( A )  - l  f ~b(Xl)--.~(x,,) e -P'r'~l d~c(~) (2.9) 

In the sequel C will always denote some positive numerical constant, 
independant of ~ and e. Our aim is to prove the following: 

Theorem 1. For K = m 2 and for ct small enough, the connected two- 
point function satisfies 

[(~b(x) ~ ( y ) ) ~ , [ -  lim [(~(x) ~b(y))a, v -  (~b(x))A.v(~(Y))A, vl 
1.41 - -  ~ r  

~< C e - " '  I.,- -yl 

where m ' =  O(m). 

3. CLUSTER EXPANSION WITH SMALL-  VERSUS LARGE- 
FIELD DECOMPOSIT ION 

In this section we show how to write our model as a gas of polymers 
interacting only through a hard-core exclusion. We first define technicaly 
what we mean by a large-field configuration y, and give an associated parti- 
tion of the identity. Next we insert this decomposition in the expressions 
(2.8) and (2.9) for the partition function and for the correlation function. 
Then for each fixed large-field configuration y we perform a usual cluster 
expansion where the massive dpc in (2.5) will be the perturbed measure; 
see the remark below (3.38). Finally, we shall sum over all possible ),'s in 
A. This will yield the polymer system. 
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3.1. A Partit ion of the Identity 

As a first step we choose a function Z(t) which smoothly interpolates 
between 1 and 0 on the interval [0, 1 ]. We take, for example, 

i '  if 0~<t~<�89 
l~<t~<l (3.10) Z(t) = -(1--e-I/"-1/2))e-l/~l-n if 

if t~>l 

An explicit computation shows that 

d"z( t ) 
dt" ~ C ( n ! ) 2  (3.11) 

Note also that Z" ' )( t )=0 if tr 1] and n~>l. Next let d c R  2 be a 
square and g(r a function which goes to ~ .  The size of the square A will 
be chosen at the end of the section and the precise form of g in Section 4. 
Define the functional 

x~[r f g(r ) (3.12) 

It vanishes when the field r is large in A in some complicated sense. 
Consider that A is covered by a pavement of squares A, and let ), denote 
a collection of such squares. We call 7 a large-field configuration. The 
partition of the identity is defined as follows: 

I =  I-[ 1= I-[ ( Z j [ r 1 6 2  
AcA z/cA 

= ~ I1 ( 1 - x , ~ [ r  I [  y~[ r  = ~ xr [ r  (3.13) 
} '~A A~)' , : leA\y } '~A 

We say that the field is large inside 7 whenever Xy[r =~ 0. Now we insert 
this partition in the expression (2.9) for the n-point function, 

<r r 

~. f X,.[r r  r e ( -  Vr[r e(-- VA\r[r 
y~A 

(3.14) 
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The exponential e x p ( -  PA[~]) has been split into three factors to suggest 
that in the small-field region A\y, Va\y has to be thought of as the pertur- 
bation, whereas in the large-field region y, the mass counterterm has to be 
combined with dltc(q~) to form a measure massless in y, and exp(-V~,) 
is a "small" factor. One hopes these remarks will become clearer in 
Section 4. 

3.2. Definit ion of the Polymers 

In the standard cluster expansion, the volume A is usually divided into 
squares A. Here we shall proceed slightly differently. For each large-field 
configuration y we shall give a different partition D~, of A, and then perform 
a cluster expansion for each term in the numerator and denominator in 
(3.14) with respect to the corresponding partition D r. The precise definition 
of a polymer, as we shall see, is a little bit complicated. The reason for this 
is technical and will become clear only in Section 5. For the moment let us 
just say that in order to extract factors e x p [ -  �89 ~a(V~b) 2] dx per square ,4 
from the locally massless measure, the polymers have to be sufficiently "fat" 
to avoid strong boundary effects. This is the reason for all this corridor 
business below. 

Fig. 2. A polymer X= {zl~ ..... ,J6, )'~, )'2}, and a tree T connecting its elements. 
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To each large-field configuration ~, we associate a first corridor B(~,) 
made of all squares A r y which touch ~, either through an edge or a corner. 
Define )7--),w B(),). Next fix L > 0  and r / > 0  and define 

L 
r I = - - m  -1  r 2 - - r l  = L m  -1 

so that (3.15) 

r 2=  1 +  L m  -1 --= = 1 + r/ 
r I 

Define a second boundary  J~(y) = {x ~ A\ r  I dist(x, ~) ~< r2} and r  e u  B(~,). 
Finally, define F =  ~Tw {A I A c~ r  ~ } .  Parti t ion F into maximal 
connected subsets Fj: F =  L)~ Fj,  and define yj.= ? c~ Fj.. Notice that a 
particular ?j might be disconnected and that [Fj[ ~< C I~'jl, where I' I means 
the volume in R 2. Note also that ~, # y' may lead to the same Fj's. The par- 
tition D~, of A is just the collection of all Fj, j = 1 ..... q, and all the squares 
At ,  l = 1 ..... p ,  of A \ F :  

D ) , ~  {z] 1 ..... zJp, F l ..... F q }  ~ {/)1 ..... Up+q}  

An element oj of D r is called a vertex. A family of large-field regions { ~,j}).'= l 
is said to be compatible if there exists a configuration y such that 
Yi = Fj c~ ~, V j, in particular Yi n yj = ~ if i # j .  A polymer X is a collection 
of squares {A}~(__~ and compatible large-field regions ' ~t~x~ 't Yj~ j =  ~ all mutually 
disjoint. We also define _X: 

X =  {Ai ..... zlsex~, Yl ..... ~'/~xl} 

X =  {zl~ ..... zl,lxl, F~,..., Ftex)} 

Figures 2 and 4 illustrate some of these definitions. 

3.3. The Cluster Expansion 

We first recall the notion of connected function and what the tree- 
graph expansion is. ~9'll) Except for the large-field problem, most of the 
material in this subsection is standard; we introduce it nevertheless for 
completeness and to introduce a clear set of notations. Let E be a 
countable set and ~ ( E )  the set of its finite subsets X. Let 0: ~ ( E ) ~  R 
a function on the subsets of E. Within this subsection IXI denotes the 

822/79]3-4-3 
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cardinality of a subset XcE. The associated connected function ~b~ on 
~(E)  is then defined recursively in the following way: 

q~,.(~)-  o 

~c(x)  - r  

IXI k 

~( x) - Z Z [I ~,,( xj) 
k = l  {XI . . .Xk}  j = l  

x~ c~ xj = ~ 
Uj~=x 

if I X l : l  

if IXl~2 (3.16) 

The inner sum is over all partitions of the subset X into k disjoint subsets 
Xj. The connected function @c appears, for instance, in an identity between 
a formal power series and its logarithm. A setting which is sufficiently 
general for all our purposes is the following. Take E =  N, the natural 
numbers. Let O be a set of objects 4j, j =  1, 2 .... (later called polymers) to 
which we associate variables z(4fl (later called activities). Suppose we have 
symmetric functions ~b from O k to R for all k/> 1. We denote in general 
X =  {il,..., i,} c N and in particular N-- {1 ..... N}. We define @(X)'s in 
which the 4j's enter as parameters: 

@(~)=~bo~ ~ (3.17) 

~bX) = ~,(X; 4) - ~b(4,., ..... 4~k) if X={il ..... ik} (3.18) 

and similar formulas for ~,.. With these definition we have the following 
identity between formal power series, assuming ~'0 = 1" 

1 u 
if (z, ~k) = 1 + ~" N-~ ~ I-[ z(4j) ~b(N; 4) (3.19) 

N > ~ I  I~l , . . . ,~N) e.(2 N j= '= l  

1 N 
then log(z, r  = ~ N.W ~ I-[ z(4fl ~kc(N; 4 )=  (z, r  (3.20) 

N > ~ I  (r  ,..., ~A,) e ,Otr j = l  

One easy way to see this is to define a ,-product between two ~b's (see, e.g., 
ref. 1 ) 

(~, �9 02 ) (X)  = ~ ~, ,(Y) r  (3.21) 
Y ~ X  

Correspondingly, when ~b(~)= 0 one defines ,-powers and ,-exponentials: 

(* exp r = ~ 1 ~p*"(X) 
n~> 1 " 

for IXl/> 1 (3.22) 
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and by definition ( ,  exp ~b ) (~ ) -1 .  Formula (3.20) immediately follows 
by checking that ( z , r  and noticing that 
~b = �9 exp ~,~. 

In general there is no simple formula for the ~c's in term of the ~'s. 
However, in the particular case where ~(X) is formally a Boltzman weight 
of a two-body interaction there is such a formula, namely the tree-graph 
identity/9) Indeed suppose 

~(X)=e v~xl where U(X-)=�89 ~ u(/j) (3.23) 
i, jEX 

The connected function has then an explicit representation. Namely for 
IXl >_-2 (see, e.g., ref. 9) 

Oc (X) = (eU)c(X) = ~. I-I u(ij) ~ drs e vlx's) (3.24) 
TonX (i,j)eT 

where 

U ( X , s ) ~ - I  E [1- -Smax( iJ)]u( i j )  
i, j e X  

The sum is over all tree graphs having the points of X as vertices, and (0") 
denotes the link of the tree T connecting i and j. To each link (/j) in T 
there is associated a parameter s~0.)~[0,1], s - { s ~ } ~ . ) ~ r  and ~drs 
denotes an integral over all those variables. Finally, Smax(tj) denotes the 
largest of the parameters s along the unique path on T connecting i and j 
when i =A j and is zero for i= j. 

Warning. The above tree-graph expansion for a two-body inter- 
action will be used twice in the following: 

1. The first time we use (3.24) in (3.33) to get an explicit formula for 
the activities K(X) in the polymer system representing Z(A). 

2. The polymer system being itself a particular case of a two-body 
interaction, we shall use (3.20) and (3.24) in (3.44) to get a 
criterion for the convergence of the series (3.43) representing 
log Z(A). 

Beginners should probably meditate on this again after having read this 
subsection. 

Let us come back to the Gaussian integrals we have to compute in 
(3.14). Denote by F[~;  y] the integrand in the denominator for a given 
large-field configuration y. The above tree-graph expansion will serve as an 
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algebraic device to reorganize in an efficient way the perturbation series 
generated by Wick's theorem. Efficient here means that we shall be able 
to prove convergence of the formal power series for logZ(A) or 
(~b(xt) ..-~b(x,))~,. For this, fix a large-field configuration ~, and for each 
pair of vertices vi, v j eD r and X~_D r define the following commuting 
differential operators: 

U(X)=�89 ~ u(ij) (3.25) 
i, j e X  

with the help of which Wick's theorem can be rewritten as (see, e.g., ref. 11 ) 

f dltc(~b)F[ek;y]=exp( �89 ~ u(ij)) F [ ~ ; y ]  
i, jeD) .  ~ = 0  

= exp( U(Dr))I ~ =o F[~b; y] (3.26) 

The exponential is defined by its expansion. Thus by continuity of both 
sides of the above equation, the formula makes sense when F[~b; y] leads 
to an absolutely convergent series, which is what we shall show in 
Section4. Now take E = D  r and X = E = D  r in (3.16) and (3.23). Then 
using (3.16) and the fact that all u(/j), commute we write the partition 
function as 

Z(A)- -  ~ (eU'n)')l~=oF[q~; y]) 
y ~ A  

ID. A k 

,3.]6) Z Z Z I-I (eU)c(Xj)l,=oF[r y] (3.27) 
r = n  k = ]  { x t . . . x k }  j = l  xic~x)=O 

Uj x j  = oy 
IO~.l k 

= Y', E E I-[ K(Xj) (3.28) 
y e A  k = ]  {Xl..-Xk} j = l  

x,c~ xj= O 
Uj xj= o). 

k 

= ~, ~, I-[ K(Xj) (3.29) 
~->~] {x~...xk} j=l 

x~ ,-, xj = O 
Uj~=A 

where the Xj's in (3.29) are collections of elements of some Dy, they are 
polymers in the sence of the previous subsection. Equation (3.28) uses the 
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obvious fact that the functional F[r factorizes over the different 
polymers X] of a given partition {X, ..... Xk} of Dr: 

where 

k 

FIe ;  7'2 = I-I F~[ r  
j = l  

F x [ r  = I-I F~[r  1-[ Fr[r  (3.30) 
AeX ) , e X  

The two factors in (3.30) correspond respectively to the contribution of the 
small-field squares A and the large-field regions 7̀  in the polymer X; they 
are given explicitly by 

F j [ r  ---Za[r e -  r~t*J (3.31) 

A~), zle F\}' 

F is the fat large-field region associated with y. The second factor in (3.32) 
is the contribution of the boundary F\y of 7. Equation (3.29) just says that 
summing over all possible large-field configurations 7̀  removes the con- 
straint that Xj ~ D r. To express K(X) as a functional integral, we first use 
the tree-graph expansion (3.24) to write, for 12"1 ~> 2, 

K(X) 13.2=8)(eU)c(X)l~=o F x [ r  

,3.24) ~ f drs(eU, X., ) l-I u(ij)~ Fx[r (3.33) 
T o n  X \ (ij) e T /l~b =0  

where, according to (3.24), 

1 L U(X,s)=~ ~ [1-sr .x(O')]  dxf dyC(x,y) 6 g 
i.j~x , o, ~r ~r 

1 dx dy Cr(x, y) ~r 6r (3.34) 
2 

and the covariance with parameters cr(x, y) is defined by 

Cr(x,Y) = - f [ l s -  --Smrax(0')] C(x,y) if x e v ;  and 
(C(x,y) if xandyevi 

yevj, i # j  
(3.35) 
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That C.r(x, y) defines a positive operator C r on L'-(R 2) can be seen from 
the following formula, (91 which exhibits C. r as a convex sum of positive 
operators: 

CT~(x,Y) = ~ a[(~) f i  Zx,(X)C(x,y)Zx,(y) 
p a r t i t i o n s  I = I 

n = { xl .....x,} 
o f  X 

(3.36) 

where 

a[(n)  > 0 and Y" a r ( ~ ) =  1 (3.37) 

where Xr(x) denotes the characteristic function of the set Y c  R 2. Then 
using (3.26) backward to go from a differential operator to a functional 
integral, we get finally the expression for K(X) in its full glory: 

f d, uc(4)) FxE~b ] if IXl = 1 

,,.z.,.f,,Ts.[ 
(O)~r . . . .  'J Or 6 - ~  F x [ r  

if ISl>~2 

where d/ar(~b) is the Gaussian measure whose covariance is C.~. Since 
the correlation length of C(x, y) is equal to m - l  [see (4.50) below], we 
choose squares with volume I A l = m  -2, which are hence approximately 
decorrelated by the measure d/l(~b). Figure 2 shows an example of a 
polymer and a tree on it. 

Remark. From the above formula for K(X) we can understand why 
we chose to take dpc(Ck) as the perturbed measure rather than the 
seemingly more natural [exp(�89 dlac(~). Suppose indeed we 
choose the latter, whose covariance C r will explicitly depend on ?. The new 
activities K~,(X) will now explicitly depend on the whole large-field 
configuration ?. Although for each f ixed y the interaction is still factorized 
over the polymers Xj in D r it will no longer be factorized after summation 
over the y's. In other words, the polymers would feel a complicated many- 
body interaction rather than just the hard-core exclusion. 
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To get a real polymer system we still have to remove the constraint 
UjXj=A (from now on we shall omit the underlining). For this we 
compute the following ratio: 

with 

Z(A) 1 + X 1 
2(A)-K(A)U,A)-  ~. ~" ]-[ z(Xj) (3.39) 

k>~l X I . . . X k ~ A  j = l  
x ~ x j = o  

N(A~/) >~ 2 

K(X) 
z(X) =__ K(A)N<X~ (3.40) 

where N(.)  is the number of squares A. The polymers containing just one 
square are thus omitted from the sum. We consider now that a polymer 
X c  D~, is a point in the set /2 of all polymers. Thus the ~i's from the 
beginning of this subsection are in our context the Xj's. Introducing for 
k~>2 

10 if X,~Xj=(,?5 W # j  
~(Xj ..... Ark) = if X i c ~ X j # ~  for some i and j (3.41) 

and ~k(Xl)= 1, we have, using (3.20), 

k 

1 ~ l-I z(Xj) r ,..., xk) (3.42) 2(A)=~o~. .  x,...x, cA j=j 

lim 1 1 k IAI -~-TSTI~ y'  ~ Z ]--[ z(Xj)~c(X, ..... Xk) (3.43) 
k>~l X I . . . X  k j = l  

connected 
UjXj~O 

where if,. is the connected function associated with ~k defined in (3.16) and 
(3.17); the word connected is justified in (3.44) below. Since the above ~b 
is of the type (3.23), we can use the tree-graph expansion (3.24) to get the 
~9,.'s or a bound on them. Just take u(ij)-u(Xi, Xj)= -fl  if X i n X j # ~  
and 0 when X ~ n X j = ~ ,  then let/3--* +oo. Let us denote by G(X~ ..... Xk) 
the graph whose vertices are the Xj's and where a link connects X; and Xj 
whenever they intersect. From (3.24) one has for k>~2 

i , c ( x ,  ..... Lm Z f II l e  
T o n  { XI,..., Xk} (0')e T 

~< lim ~, f drs I-I u(Xi, XJ) e''-"~''~'x''xj' 
/ff~ or., Ton  {XI,. . . ,Xk} " (O ' ) eT  
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= lim ~" I1 ( 1 - e  "~x''xj~) 
f l ~ o 5  T o n { X l , . . . , f k }  (ij) e T  

= ~ 1 
T o n  G(XI ,...,Xk) 

= number of tree-graphs on G(X 1 ..... Ark) (3.44) 

which is the famous tree-graph bound/91 In particular, ~,,(X~ ..... Xk) 
vanishes when G(X~ ..... Xk) is not connected. We warn the reader that the 
trees in (3.44) above have the polymer Xj as vertices, whereas in (3.24) the 
trees were built on the polymer themselves. A simple application of 
Cayley's formula for the number of trees with given incidence numbers 
shows that the series (3.43) will converge provided that 

z(X)  e N(x) < 1 (3.45) 
X~ 0 

Finally we come to the n-point function (2.9). We already have an 
expansion for the denominator divided by K(A) NtAI. Replacing F[ r  y] by 
r r  F I e ;  y] generates a similar expansion for the numerator. We 
just need to change the definition of the activities slightly. Fix a polymer 
X a n d  a set o f k  points {xl ..... Xk} -ooc_X.  Define 

I z(X)  

z(X; w) - replace F x [ r  by 1--L,~o r F x [ r  

[ in  the definitions of z(X)  

if c o = ~  

if co :/: ~ 

(3.46) 

Denoting o~j--- {xl,..., x,} c~_Xj, we have 

1 f r 1 6 2 1 6 2 1 6 2  
K(A) NIm 

1 k 
= Z Z k-i I ]  -(xj; o~j) ~ (x ,  ..... x~) 

k>~l X I . . . X k = A  j = l  
N~.Xj) ~> 2 o r  co1r 0 

U j =  l~Oj= {x I -. �9 :v.} 

i z(xj; coj) Odx, ..... xk) 2(A) "'6' Z E Z k5 
par t i t i ons  I = 1 k ~> 1 XI . .- Xk " =  

{ x l  " "  n,,, } N(  X j  ) ~ 2 o r  H 9 * O 
of{x~ ... x.} U;= ~ , ~ j=  =t 

(3.47) 
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from which we readily identify the connected n-point functions: 

<0(x,)... o(x,,)>;.= Y'. Z 
k~> 1 X~--.xk 

N(Xj) ~> 2 or (u/~ O 
U~'= I taxi= {-~:l""'-Vn} 

,fi k5 z(.,.~j.; (.oj) I / / c (Y l ..... .Xk) 
j = l  

(3.48) 

The analog of (3.45) then implies convergence of (3.48). In the next section 
we shall prove the following, which implies (3.45) when a is small enough: 

Theorem 2. There is a function 2(c~)--+ 0 when ~--, O, such that 

l=(X; Y', I-I e-'m/2)dist'v"'J))'(<x)NIX' 
TonX (ij)~T 

~e-- ( ' " /4)d iam(X)  E I~ e-(m/4)dist(e"cJ)(el/4"~(~ 
TonX ((/)eT 

This shows that z(X; 09) has a small factor per square A of volume 
m -2 and a small factor per length m -~ of each link (tj)~ T. Now consider 
the case n = 2  in (3.48). From the fact that f i e = 0  when G(XI ..... Xk) is dis- 
connected we see that X~ ..... X k have to form a chain of polymers between 
the points x, and x~_ of length at least I x , -Xz l .  The second inequality in 
the proposition above directly implies both the convergence of the cluster 
expansion (3.48) and the exponential decay of the two-point function with 
rate m ' =  m/4. The main theorem will thus be proven. 

4. CONVERGENCE OF THE CLUSTER EXPANSION 

In this section we shall bound the activity z(X)  of a polymer 
X = { A I  ..... As(x), )'l ..... )'tlx)}. Our aim is to prove Theorem2,  which 
implies (3.45) and hence the convergence of the cluster expansion for the 
correlation function (3.48). Fix a given polymer X and a tree T on it con- 
necting pairs of vertices v;, vj. The small-field squares Aj and the large-field 
regions yj will be treated separately. We start by stating a lemma that we 
shall use over and over again in the rest of this section. 

Lemma 1 (Volume argument). Take a square A and a collection of 
d vertices {vs}~= 1 connected to it by a tree T. Then for any r > 0  there 
exists a C ( r )>  0 such that 

d 
(d!) ~ l-I e--mdist(A'vJl ~ C(F) 

j = l  
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Proof. The product above is obviously largest when all vj's are 
squares Aj and those are arranged as compactly as possible around A. 
Because they are connected to A by a tree, all the Aj's are different and at 
least [d/2] of them are such that dist(A, Aj)/> Crn-I  v/d. Thus 

d 

1-I e . . . .  d is t (A, ,T)  ~< (e - c  ~"d/2)a (4.49) 
j = l  

On the other hand, one has the trivial bound 

(d!)~ ~< (da)" = (dr) d 

For large d, exp( - C  x/~/2) is smaller than t /dL I 

This means that we shall be able to compensate local factorials to 
arbitrary powers by a fraction of the exponential decrease of the covariance 
C(x, y). Indeed one has the following integral representation(t~ 

e '''-/'- r o~ e-~"" -  Ix -vl2/4~ tc 
(--~)2J do~<~C l o g ~  e .... Ix-el (4.50) C(x, y) = ~/~- 

Recall that we chose to take the ultraviolet cutoff ~: = rn-', and the prefactor 
above is just a constant independant of m. 

4.1. Small-Field Squares 

Fix a square A in the chosen polymer X. Denote by d~ the incidence 
number at the vertex zJ of the chosen tree T. We shall prove: 

Proposition 1. With the notation of the last section, the following 
bound holds: 

Oa,, - e.~t~ ~< C(da !)c~xu3 f ~ dx, . . .  ~ dxa,, fi~b(x,)... ~b(xa,,) X,~[q~] e 

uniformly in ~b. 

We supposed above that A was a vertex of the polymer X, but 
obviously the proposition applies as well when A is a square in the 
boundary F\~, of a large-field region ~ e X. We use this in the next sub- 
section. From (4.50) we have a factor C exp{ - m  dist(A, vj)} for each line 
of the tree T emerging from A. We save a factor C exp{ - (m/2)d i s t (A,  vj)} 
in view of Theorem 2 that we want to prove and are thus left with a factor 
C e x p { - ( m / 4 )  dist(A, vj)} for both endpoints of each line (tj)ET. The 
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volume argument  above then allows us to compensate the factor (da !)c in 
the proposition, and we have a small factor c0/3 per small-field square as 
we wish. 

Proof.  Leibnitz's formula for functional derivatives gives 

~ a,l 1L~{~] 
f a dx i  . . .  f ~ dxa. ~r X~[ dp] e-  

= Y~ ~ ~r n ~ O  

~(aa -,,) e -  Pa[4,] 

We consider the two factors above separately. Define 

X~i'~[ @ ] -X("> (~Al [ g(@(x)) dx ) (4.51 ) 

where [A I =  m - 2 =  1/(o~2e 2) is the volume of  the square. As an example, for 
the first two derivatives one gets 

~(x) IAI-'x~[~3 g'(qb(x)) 

I~1-2x~[~] g'(~(x) ) g'(ck(y) ) + I~1-'xb[~] g"(ck(x) ) 6(x- y) 

For  g(~b) we choose the following function: 

g(~b) - 21 ~2~b 6 + 2,_ e - 4 ~  (4.52) 

where 2~ < 1 and 22 < 1 are numerical constants independent o f e  and e to 
be adjusted later; see remarks below (5.95) and (5.104) in the next section. 
There are two reasons for this choice: 

1. Below [see (4.60)] we shall use the Schwartz inequality to 
separate the factors ~b s and e -2~'~ in the formula (2.4) for V(~). To 
control both of  these factors squared we have to introduce the 
exponents 6 and 4 in (4.52). 

2. The coefficients ~2 has the advantage that it leads to the bound 
I ~l-~b]l ~ C uniformly in e when Xa[~b] ~ 0; see the case n = 0 in 
(4.62). 
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Now 2'~')[r r for some n />0  implies that both 

[A[-1 Is 21 ~2r dx<~ 1 

Idl -~ y~ 22 e-4a~(xl dx~< 1 

(4.53) 

Also we have for the derivatives of g 

~'22( - 4 ~ ) " e - 4 ~  + 21 ct216 �9 ... �9 (6 - n + 1)] r 6- ' '  for 

g(")(r = ~"]-2(-4ct)"e-4~r for 

l ~ n ~ 6  

n ~ 7  

(4.54) 

and H61der's inequality for m ~< 5, (4.53), and a < 1 imply 

[ZJ[--I fdO~2~gm(x) d.x~o~2(lA[-1 f/,O6(x) dx)m/6~ "~ 6(2) -m/6 -,~ cr ~ ~< C~ 1/3 

(4.55 

Thus, from (4.53)-(4.55) we conclude that when 2 'a[r  ~ 0 

IAI - t  f,~ g.,l(r dx ~ C4"o~ x/3 (4.56) 

Notice that the number of integrals which survive the J functions is 
precisely equal to the number  of factors [A[ -1. The number of terms 
in J"X,j[r162162 is bounded by n! and from (3.11), 
;(~,1[r ~< C(n!)2. Thus for the first factor one has 

'~"X~ [ r ] ~< C(n! )c~l/3 (4.57) 

The other factor in Leibnitz's formula is similar; as an example, the first 
two derivatives are given by 

J e -  rj[~3 

~r 

~2 e -  Pj[r 

~r 6r 

- -  - 9 ' ( r  e -  ~ t * l  

(4.58) 

= V'(r V'(r e -~A~] - V"(r J ( x - y )  e -mA~1 
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The integrals surviving the 6 functions are of the following type: 

~'"'(~(x)) dx =~ dr(1 - 0  217 I 

x fa dx [(~b3(x) e-'~4'x') '') --4(tb3(X) e-2'~(~c'~ 1")] (4.59) 

Assuming X~[q~] #0, and using successively Schwartz, H61der, and (5.53), 
we have 

1 f dx Oa ~b"(x) e --2tag)'.':) 

~1/2/ 1 dx) <~(~AI fa qJ~"(x, dx)  ~-~1 fe-4'"<'c'~ ,/2 

V"/6 / 1 e dx y/2 
I 

, 4 .53}(1  ~m/6( 1 ~t/2 
~< \2---~J \~_2J ~< C~-"'/3 (4.60) 

The term with e-='e'xl is similar. Starting with m = 3 in (4.60), with see that 
going from n to n + 1 in (4.59) either produces a factor 0~ ~/3 from the last 
inequality in (4.60) or produces a factor 2c(~<20~ 1/3 from the derivative of 
the exponential. Altogether we get 

~fa(qj3(x) e-2ta'klx))("'dx ~< C4"ot - 1 +'/3 (4.61) 

and thus from (4.59) 

fa P~176 dx <~ C(40~1/3) ", n >/0 (4.62) 

The case n = 0 m particular implies 

K(A)--f dp(~)X,~[~]e-P"t*~>~C f dp(~)X,~[~]>~C (4.63) 

if a is small effough. As before, the number of terms in the nth derivative 
of e x p ( -  Va[~b]) is bounded by n! thus 

fa ~,da-,,) e -  ~a[~] dx,,+ i ... f a dxa~ 6dp(x,+ 1) "" J(a(xd~) <~ [(da --n)! ]c(o~l/3)(d~-") e -e~teq 

(4.64) 
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The sum of the binomial coefficients just gives a factor 2a~< d~ !. Com- 
bining (4.57) and (4.64) proves Proposition 1. II 

4.2. Large-Field Regions 

Fix a large-field region y (we omit the index j of yj here) in our 
polymer X, and denote by f '  the fattened large-field region associated with 
it. Let dr denote the incidence number of the tree T at the vertex 7 and 
{vj}]~=~ all vertices in X connected to 7 by T. We first decompose the 
integral we have to compute into smaller pieces: 

dr C~- " '  ] 

,~ x;=, J 6~k(x~)... 8ok(x+) 

= ~ ... y" (~I Ce-'",/4'dist"~J,"J') 
~I=F kldFC F \ j =  l 

a X  'lr ~r ) - "  ~ (  X dr) ] 
xf ,dx, 6UrF[~b;7] I (4.65) 

The above sum has N(F) ar terms. The naive bound obtained by just 
bounding each term in the sum by the supremum is not good enough, 
because the volume argument does not allow us to compensate the factor 
N(F) at. Therefore we reorganize the above sum in the following way. We 
first fix the number d~ of lines arriving in each square A = F. In other 
words, we prescribe a distribution {da} a=n of incidence numbers and we 
sum over all possible ways to link the dr vertices vj to F with this constraint. 
This sum is really a sum over all decompositions of the set { v~ ..... Vd,-} of 
all vertices connected to y into disjoint subsets na indexed by the squares 
in F and having a prescribed number of elements Irc,~l = d~ .  Then we sum 
over the distributions {da}A=a- Let us denote by ha(j) the j t h  vertex of 
the subset ha. We have 

) (4.65) ~< Y' ~' I-[ Ce-("/4'dist(zl 'n"(J')  

{da}a=r n={na}a=r F j =  l 
Z,Jda=dr of {vl ...Var} 

Inal =dA 

• (l-J~, ; z d x ' ' ; a  "axa" '~a"(1-Z~[fb])e-e"[~]60(x,) �9 �9 �9 6~b(xa~) ) 
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The number of terms in the first sum is bounded by 2 ~r)+ar. A rough 
bound for the second sum is obtained by replacing it by dr independent 
sums over all squares in R'-. Using a fraction of the exponential decrease 
to bound each of them by a constant, we get 

a,i 

E H R Ce--(m/4)dist(/J'n~(J)) 
n={na}acr z J = F  j = l  
or  { t , j  - - .  "ar} 

In,fl = da 
'/a 

~< sup H H Ce-("/4)(l--l/4)dist(A'r~dJ)) 
, r={nala~r , J ~ s  j = l  
or  { ,,z �9 .- ~,@} 

I nal = da 
d:f 

= H 1--[ Ce-"/4){I -I/4)dist(J,va, i) (4.66) 
z l c / -  j = l  

where v~.j is the decomposition which realizes the maximum for the given 
{d~}. The factor 2arcar=I-I~r(2C)a" can be compensated by another 
fraction of the exponential decay; see, e.g., (4.49). Thus we are left with 

(4.65) ~< 2 u~r) sup H Ce-(m/4)(1-2/4)dist(J,t,,i.j) 
{d,d4=r ~ c F  j = l  

Za da = dr 

5a"(1 -- Xal~b] ) e - ea[~] 

d x  ~ ' ~ J L ~ A "  _ _ 1  
x fa d,`` " f a  (4.67) =lIr \ r 1 " ~" 6 r  6r  

The last factor in the formula above is controlled by Proposition l, which 
gives a factor C(d a !)cctt/3 per square. Recall that this bound was obtained 
using only the small-field condition Xa[~b]. The remaining part of the 
exponential decay compensates the local factorial. Thus for the squares A 
in the boundary F \  7 for which d a # 0  we have a small factor Ca t/3 as 
before. 

Heuristic Discussion 

The seconcl factor corresponding to squares in the large-field region 
has to be controlled by other methods. Suppose the field ~b(x) in .4 is very 
negative; then the potential V4[~b] will be very large and positive, leading 
to a very small factor e x p ( - V a [ ~ ] )  which compensates any power of 
Vj[~b] or its derivatives. If ~b(x)>~0 and satisfies (l -x~[~b])  #0 ,  we 
distinguish two cases. 
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1. Either $(x) is more or less constant in d and thus from (4.52) 
is larger then ct -~/3. But ct-I/3~<~ -I for oc~l  and V ~ [ ~ ] =  
~ V(~(x))dx~[A[ m2q~2/2~o: 2/3. Thus we can expect a small 
factor exp(-1/0~ 2/3) from e x p ( -  V~[~]). 

2. Or ~(x) is not constant in A. In that case we shall prove by means 
of Sobolev inequalities that Jj (V~)2(x) dx >/a-2/3. The small factor 
will then be provided by the measure exp{ �89 ~}, rn2~2(x)dx} dpr(~) 
which is locally massless in }, and thus formally contains a factor 

1 e x p { -  vJ~ (V$)2(x)dx} for any square A~F. Therefore in this 
case also we can expect a small factor e x p ( -  1/0~ 2/3) per square. 

Altogether we can expect a factor exp{-CN(7)/ot  2/3} for every large- 
field region yeX.  To bound products of derivatives of Va[~] we use the 
fact that the field $(x) is small in average in the corridor B(~,) around y and 
the fact that ~(x) cannot grow too fast because of the factor 

1 exp{ - ~ J~ (V~)2(x) dx}, see Lemma 3 below. 

The main tools to make the above discussion rigorous are the 
following two propositions, proven in the next section. The first relies on 
Sobolev inequalities: 

Proposition2. Suppose that ( l - z a [ ~ b ] ) ~ 0 ,  that is, either 
(1/Izll) Ja ~2~6(x)dx >1 1/(42~) or (I/[AI) ~a exp{ -4cqb(x)} dx/> 1/(422); 
then there exist constants 2~ and 22 independent of ~ and e such that 

either Va[q~] ~ C/Ix 2/3 

or Ij  (V~)2 (x) dx >i C/~ 2/3 

The second proposition deals with the normalization problem 
associated with extracting a factor exp{-�89 from the 
locally massless measure. Recall that )7_--ywB(),) and that dpr(~) is a 
Gaussian probability measure on fields ~b(x) defined on the support _X of 
the polymer X. 

Proposition 3. With the definitions of Sections 3.2 and 3.3 and 
assuming L is large enough and r/is small enough, the following formula 
defines a new Gaussian probability measure d;Tf(~b): 
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where afir((o) has covariance ~ r  = [(C r ) - I  _ m2xr_ E#=, V}x~Vy] - '  > 0, 
and all operators are on L2(R 2, dx). Moreover, 

~4rr~ eCU~rl 

For small enough ~ the normalization factor ./Irr will be compensated 
by the volume factor exp{-CN(7,)/~ 2/3} expected above. 

Let us go back to (4.67) and apply the Leibnitz formula for functional 
derivatives to the second factor: 

~an(l -2,~[~b]) e - ~t+] 

.< 
, ,=o  , ~ r  �9 - ,~ r  

x dx,,+~ ...LdXd~6~(X,,+~)...6~(Xd~)f (4.68) 

Using (4.57) to bound the second factor in (4.68), and (4.58) we get 

(4.68) ~< (dj !)c sup 
{"J} E}=lnj<~da 

We first prove: 

k dx j=[-Ii ;~ ff'~)(~b(x)) e -e~E~] (4.69) 

n k k I .emma 2. For any dj~>0 and any { j}]=l such that Zj=~ nj~<d~ 
one has 

k 

<~Ca"exp{m---~-2Lr (vr dx}exp(- CT/3) 

x [ (da , )c+ (l~-~I ~ ]fb(x)ldx) a~] (4.70) 

Proof. R.ecall that 

1 ,~ 1~ e2~2b 2 (4.71 ff(tb)=e 2 - e - ~ * + ~ e  --  +~ / - - - -~ -  

1 2 3 3 1 ~b f (1- t )2(e-~ '4-4e-2~ '4)dt  (4.72) 
Jo 

822/79/3-4-4 
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First suppose that ~b/> 0. For n >1 2, (4.71) immediately implies I ff(")(~b)l 
C2"m 2. For  n = 1, ~ ~< 1 and (4.72) imply I V'l-~]l ~ CmZ0c~b 2 + Cm2o~2~ 3 <~ 
mZck. When ~b>~l, e - ~ < o #  and (4.71) imply [V'(~b)l~<Cm2~b. Next 
suppose that ~b ~< 0. From (4.71) we deduce successively that 

I P (~) I  ~< C leZ~(e -2~  - c # ) l  ~< Ce2~e -2~  

I P"(~)l ~< C le20{2(e -2~  - 1 )1 ~< C'~20{2e -2a,~ 

and 
I ff("l(~b)l ~< Ce22"a"e-2~r for n ~> 3 

Summarizing, we have 

~C2"m2(~b + I) if ~b>~0 
V(") ~< [C2,,e20te-2a~b if ~b ~< 0 

Define 

Then 

But 

and 

A> - { x e ~  I O(x) >_- o} 

/t< - { x ~  I O(x) ~<o} 

]~ I I  A V'("J)(~b(x)) dx e x p ( -  V'~[~b]) 
j = l  

.<ex  ex ( 
k 

x ezc~ < exp{ -2o#(x )}  d x + ~ - ~  > ( r  1)dx 

e-2"r = ( e - ~ - -  1)2 + 2(e - ~ r  1) + 1 

e 2 f~< (e -~(x)-  1) dx 

' J "  1 I l e - ~ ' x ) - I  I 

~<e-" IAI ~-~ (e-Z=~'(")-l) z = T~- (V~[4q) '/-" 

(4.73) 

(4.74) 

(4.75) 

(4.76) 
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Combining (4.74)-(4.76) and assuming ( 1 - Xa [ r ] ) r 0, we get 
k 

1 1 

) C a' exp ( 2 G r  dx 

x [ ( e x p (  V~r Ir k 

~< C <' exp ( 2 J~ r exp 

• 1; (Vr V~r 

Pr~2ca"exP{2faCZ(x) dx)exp{~fA(Vr 

• [ (--~)a' + (IA-~ f ~ ]r (4.77, 

Using the trivial inequalities 

n" <~ C(n!) c and 

we get the desired result (4.70). 

1 
e -  c/~-'z ~ ~< C(n!)C e 

Lemma 2 

To control the second term in the bracket in (4.70) we express the field 
inside ), in terms of the field in the boundary B(y). We assume Xa[r r  
for all A eB(y). Take y in the square zl' eB(y) which is closest to xEy. We 
have 

dt Ir = r + 13o (x - y ) .  Vr + t(x -y)) 
1 <~lr ]Vr (4.78) 



552 Lemberger 

For A ~ y and A'~ B(y) define the strip A(A, A') by 

A ( A , A ' ) - { z 6 R 2 ] z = y + t ( x - y ) , x E A ,  y ~ A ' , t ~ [ O ,  1]} (4.79) 

Obviously 

IA(A, A')[ >~C IA[ dist(A, B(y))rn (4.80) 

Now averaging (4.78) over x ~ A and y ~ A', using the small-field condition 
in A', H61der's inequality, and (4.80), one gets 

1 ;,~ I~(x)l dx IAI 
l fadx l ~ [-~[ f a [ qb ' y ) l d y + C dis t ( A , B ' y ) ) -~[ ~ [  f a d y 

t" J I 

x Jo dt [VO(y+ t ( x - y ) ) ]  

c 1 f~ IVq~(x)l dx ~ - ~ + C  dist(A, B(y)) IA(A, A')I ~,a,~ 

c 
~<--rs+C dist(A, ~,~.a') (V~)"(x) dxj  1/2 (4.81) 

To use (4.81) systematically we make a partition of )7 in regions ~ in the 
following way. To each square A'~B(),) we associate the region ~ c  f 
made of all squares A s y for which A' is precisely the closest square in B(y); 
see Fig. 3. By Q(A) we mean the region containing A. In particular, 

Fig. 3. A partition of ~7 in regions /2. The region g2 is associated to A' E BO'). 
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A(d,A')cO(A). We also denote by d a = Z a ~ d , j  the total number of 
lines arriving in t2. Then we have the following result. 

kemma 3. With the above notations and assuming Xw[~] =~0 for 
A'~B(?) and (1 -7a[r for d e ?  one has 

x I-I c exp (4  4 dist(A, v~,j) 1-[ do! (4.82) 

Proof. 

~, i ,~,,c+(,~ ,~,x,,~,)" 1 
,4,,, E ic ~< I-[ (da!) c +  ~ . a + C [ m d i s t ( A , B ( 7 ) ) ]  ~/2 

, d e  7 

x (~o,, ,~,2,x,,x)t'Jl 
CN(7)- ~ a,, f m  1 

• \ j = l  ~-~ dist(zi, v~.j)}) (dzl ]) r 

c B(~,))} +{Iexp ( 2d:e,d)]  C m l  +exp { -  ~-~ dist(zl, 

(~o )lTl x C[m dist(d, B(7)) ] v-" ~,J) (V~)'-(x) dx 

/CN(7)'~ 1--[ exp ~-~dist(A, va,j) ~< exp\  20t2/3 j }, j= i 
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~< exp \ ~ j  y j__I~[ exp m 1 

• {~ I (Vq~)2(x)dx } 

[{ {1 
\ l /2) aa] 

exp \ 2ot2/3 j exp ; 

x Cexp -4-~dist(a, va, j) 1-[ I-[ (dta/2+d'/2) d" 
y " ~ l  O c ' f ;  A ~ O  

~< exp \ ~ j  exp ~, 

(ai~i ja[-] { m l  })  x Cexp -4~dist(d,%,j) r-[ (do!) 

II Lemma 3 

Theorem 2 now follows from the following remarks: 

1. 

. 

. 

4. 

5. 

(4.83) 

The factors 2 NIrl in (4.67), exp ( -C /~  2/3) in (4.70), and 
exp{CN(y)/2~x 2/3} in (4.82) combine to make a small factor 
e x p ( - C / o ( 2 / 3 )  per square again. 

The factors exp{ �88 Jr (Vq ~)2(x) dx} in (4.82), exp{ �88 Sa (V~b)2(x) dx} 
in (4.70), and exp{(m2/2) Ja ~b2(x) dx} combine to make the factor 
in front of dpr(~b) in Proposition 3. 

The factor exp ( -C /~  2/3) compensates both the normalization 
factor A " r  and the factors 1/K(A) per square. 

The factor in parentheses in (4.82) is compensated by half of the 
remaining exponential decay in (4.67). 

The factors (d~!) c in (4.69), C a~ in (4.70) and (4.82), and the 
factor do! in (4.82) are all compensated by the remaining part of 
the exponential decay in (4.67). To compensate the factors do!, 
one has to adapt the volume argument given in Lemma 1. The 
cube A is now replaced by a region g2, but here again a fraction 
of the d o lines emerging from t2 are longer that C x/~a. 
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5. SOBOLEV INEQUALITIES 

In this last section we prove Propositions 2 and 3, which are at the 
core of our treatment of the large-field regions. 

5.1. Proof of Proposition 2 

The proof rests on three elementary Sobolev inequalities (see, e.g., 
refs. 13 and 14). Let s u be an open, connected set whose boundary 
is piecewise C ~. Let l~<p~<~ and p*=(1/p-1/N)-~>p. Suppose 
f eLP(12) and Of/OxjeL~'(s Vj= 1 ..... N. Then 

if l ~<p<N,  then IlfllL~'(~a)~ C(O) ( [ I f l [~a~+  ~. Of )(5.84) 
j= I ~ Le(t2) 

ifN=p<~q<~, then [[fl[z~,a,<~C(t'2)(llfll~,a,+ ~ ~--fxj )(5.85) 
j =  1 Lr(s'2) 

lll-fjlz ,, , c(o/llv/ll,. ,o) where Y- f,I(x)dx /5.86) 

C(I2) is a constant depending only on /2. Recall that (l - ; t '~[~])  # 0  
implies 

either 

or 
1 1 

where 21 and 22 are fixed numbers. 

(a) Case (1/IAI) J3 cc-'~b6(x) dx/> 1/(42~) 

Inequality (5.85) for p = N = 2  and q = 6  implies after a change of 
variable to eliminate the dependence of C(A) on the size of the square A 

1 x~l/6 

(5.87) 
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where (V~)2= (O~/(~XI)2 de" (OIJ~/OX2) 2 and C is now independent of the size 
of the square A. There are two possibilities: 

fa f 1 "~1/3 C 
either (V~b)2(x) dx/> t421 ) -  e2/s (5.88) 

or (V~b)2(x) dx <~ | - - i  and (b2(x) dx 
\421J ~ ~-] -- \4 ; t i J  0r 2/3 

(5.89) 

Case (5.88) is one of the conclusions of Proposition 2. Thus we have to 
prove that the two inequalities in (5.89) imply V~[~b] >~ C/~ 2/3. For this, let 
us denote u=~b 2 and g ( t ) - ( e  - ' s  1) 2, which is an increasing concave 
function of t. With these definitions one has 

Ig(a) -g (b ) l  

Now using (5.86) 
after a trivial change of variable, 

-~[ g(~ d x -  g(~2ff) 

1 
<-G T-~ f a Ig~ ) -g(~ dx 

C~ 2 1 (5.92) 
I~ l u ( x ) -  a[ dx 

~< 1 + ~ 2 ~  IAI 

(5.86) Cot. 2 1 r 
~< l+ct2~lAli/EJ~ IVu(x)ldx 

Cod 1 ;~ 
~< 1 + o~2ff 1,41'/2 tWO(x)[ I~(x)l dx 

C~2 \ , / 2 /  1 - dx / (v+,2,.,<,x) ."2 
(5.89) 
~5.91) C a  2 1 

~< 1 + ~eff c0/s ffl/2 

~2 ,~2 ~2 
= ~ ( e - ~ @ _ l ) 2 > . ~ ( e - ~ l , l _ l ) 2 = ~ _ g ( ~ 2 u )  (5.90) 

= u(x) dx = (b2(x) dx > / / - - /  (5.91) 
\ 4 2 , J  ct z/3 

< ~ l - ~ [ a - b l ,  Va, b>~O (5.92) 

for p = 1 and N =  2, we get, with a = ~2u(x) and b = ~2t7 

(5.93) 



Large-/Small-Field Expansions and Sobolev Inequalities 557 

First suppose 

Then 

But 

1 ,~/3 C 1 ~-~) ~/---~ <~ a <<. ~_ 

g ( ~ 2 f f ) ~ ( l _ e ) 2  ~2ff (5.94) 

C~ 2 1 ~2ff 1 1 
/~1/2 = C - -  - -  C)~11/6~2ff  (5.95) 

1 + c~2ff c~ ~/s 1 +oc2ff~ 1/3 ffi/2 ~< 

Now choose 21 such that C21/6<~ � 8 9  2. Then (5.93)-(5.95) imply 

~,j V(dp(x*)) d'c =2 [d[ (~d] ~ag(~ dx ) 
8" 1 >~-~-I,~1 ~ (1 - e )  2 ~2a>~ Ca>~ C ~2/3 (5.96) 

Suppose now ~>~ 1/~ 2. Then g(~x2ff)~> ( 1 - e )  2. But 

C~ 2 1 Coot7 I/2 
- -  f f l / 2  ~ -  0( 2/3 ~ C ~  2/3 (5.97) 

1 + ~2ff~1/3 1 + ~ - u  

And thus again 
3 

f,j V(dp(x))dx=2 lAl ((l_e)2_Co~2/3)>C>~ C ~ -  0~2/3 (5.98) 

The proposition is thus proved in case (a). 

(b) Case (I/IAI) ~a e - 4 ~ x J  dx/> 1/(422) 

The inequality (5,84) for p = I, p* = 2, and N = 2 allows us to trans- 
form the bound on the average of e -'~1"~ into a bound on e -2~lx~ which 
is the asymptotic behavior of V(~b) when ~b ~ - o z .  Denote v = e-2"o; then 
(5.84) gives 

1 2 
4/~-~'2J "~ \]A~ e-4~4'(x) 

~< 1 e__,~e,x , + ( I A ~ j ~ ,  f e_2~...,2 e ~ d x ) ]  

+0c 1 e-4~'(")dx) ~ L  (V~b)2(x) 1/2-1 (5.99) 
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Thus 

l ~ [ C - - ( f . d  (V~) 2 ()C) (T-~[f4e -4~ 
(5.100) 

There are two possibilities: 

either I~ ~ C C (V~)-(x) dx >1 ~ >~ o~2/3 (5.101) 

or ;~ (v~)2(x)dx<'Co~- and -~[l fae-Z~'CaU~ dx> ~ C  (5.102) 

Case (5.101) is a conclusion of the proposition, hence we have to show that 
the two inequalities in (5.102) imply Va[~b ] >~C/a 2/3. Let us denote 
v=e -2~r and h(t)-= (V/7= 1) 2. Then 

g2 ~2 
V(r  1)'- = ~ -h(v )  (5.103) 

6_~l~Av(x) dx=~Aifje_2~c,,~,dx C > ~ > ~ 2  (5.104) 

if 2,_ is chosen small enough. We shall actually choose 22 such that also 
h(f)~> 6/2. Ifa~>2 and b~>0 one has Ih(a)-h(b)l <,C la-bl. Then, using 
(5.86) for p =  1 and N = 2  again, we get with a = g  and b =  v(x) 

~AI ~a h(v(x)) dx-h(~) 

<<-~dl f lh(v(x))--h(a)l d x 

<. C ~l fa Iv(x)-~[ dx 

~5.86~ 1 fa ~< C - -  IVv(x)ldx 
lal,/-" 

<~C~x(~a(V(~)2(x)dx)'/2(~A]fae-a~c'"'dx) 1/2 

~5.1o41~5~~176 C~(i ~ ( V & ( x )  dxl '/2 
~< .6 C -  ~x(I.,.4 (V~b)2(x) dx) '/2 (5.105) 
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Now choose the numerical constant C in (5.102) small enough so that the 
coefficient of t7 in (5.105) is less than, say, 1/4. Then, recalling that ~>~2, 
we have 

f ~ V(C'(x)) dx =~ lAl (~l f a h(v(x)) dx ) 

( 5 . 1 0 4 )  ,~ 
(5.105) e- /t/~ g'~ (5.(04) _ 1 

- >/ ~ I A I  - /> c s  (5.106) 

and Proposition 2 is proved in case (b) as well. 1 

5.2. Proof  of Proposit ion 3 

Our aim is to show that ~/-r is finite and does not grow faster than 
exponentially in the number of squares N(y) in the total large-field region 

r ~/~x~ yj c X. Recall the basic formulas defining the covariances C and Y= wj=l 
C r as operators on Lz(R 2, dx): 

s 

1 ;R eiVt'~-"~ d(p) @' e _p2/~. 
where ~ ' ( P ) - p 2 + m  2 (5.107) 

~[1--sr.x(/j)] C(x,y) if xevi and 
C'r(x'Y)=-[C(x,y) if x and ysv i  

yevj ,  i:Aj 
(5.108) 

= Y. 'C(=) ~ xx,(x) C(x, y) xx,(y) 
p a r t i t i o n s  I = 1 

~ =  { X . . . . , X k }  
o f  X 

(5.109) 

where 

a.r(n) > 0 and ~ ar(zr) -- 1 

One has the obvious inequalities (operator positivity and pointwise 
positivity) 

C>O, C~>O (5.110) 

C(x, y) >1 Cr(x, y) >i 0 (5.111 ) 
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However, it is wrong that "C~> c "r ' '  and this is the origin of the pain. The 
normalization factor is given by 

; . , , , ,  exp , . . ,  

where 

exp {~ ; (V~b)2(x) dx } 

exp (~ I (V(~)2(x)dx } 

(5.112) 

2 

A-m2zr ~ V)x;Vj>~O (5.113) 
j = l  

and ;(e is the characteristic function of the support of ~7, Vj = Ol&x)., and the 
dagger denotes the adjoint in L-'(R 2, dx) with respect to the usual scalar 
product ( .,. ). Now if A < ( C r) - ~ and (C[) ~/-~ A(C r) 1/2 is trace-class, one 
has (see, e.g., ref. 12) 

fdpT(r 

= exp { -- 
1 

Tr log [ 1 - ( C T) '/2 A (C.T) '/z ] ) 
5 

z 1 } - ( A C t ) "  (5.114) 
n ~ > l  H 

In our case we do not know a priori that A < (C~ r ) -  i; however, we 
shall prove that the above series is absolutely convergent; this then implies 
, f i r<  ov and therefore A <(C~)  -1. Proposition 2 will follow from (5.114) 

and Lemma 4 below. The trace class property follows from Lemma 4 as 
well. 

Lemma 4. Under the hypothesis of Proposition 3 one has 

r T n C K T (AC,) <~-- lyl (5.115) 
�9 H 

Remark .  From the above bound we can see that the ultraviolet 
cutoff is essential for ~/-r to be finite. Indeed, removing the cutoff means 
h---, m. For h'=m 2, one has x I~1 = I~l/l~JI = N ( y ) ~ <  CN(F). 
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Proof. 
identity 

Let X(x) be any real function on R 2. One has the trivial 

.8 -s  r~" -,:v,/ x +( +( 
j = l  

9 . "~ 

=.,2z +s v;zv,- " "  " - -  ~ [Z, ( - i V y ) ]  
N / / 2  j ~  I 

, ~ i axj (5.116) 

For l ,=l , r  the first two terms in (5.116) reproduce A. The last term 
corresponds to the boundary effects. The general startegy of the proof is to 
replace in a first step A by B, for which the analog of (5.115) is "easy" to 
prove, and then in a second step to show that the boundary effects are not 
too large when the region { is sufficiently far away from the boundary of 
the polymer X. This is the reason for defining the boundary B(y) with r 2 
large enough. From now on define B as in (5.116) with X=Z~,; see 
Section 3.2 for the notations. Then we have the following inequality 
between A and B: 

2 

A - m2Z; + ~ VJX;Vj 
j = l  

/>0 

2 m 2` fiX~, tin 2, , ,  
" Vj X;Vj + 8.x) [;(~' 

j = l  j i j 1 

1' [5 ] s=,  L ~  +(-iVj) ze +(-iVy) 

- ,,,-x,<,,, +,:,Z v,x,<,,>v,- 7 , : ,? "  o,<, 

( - ; v j ) ]  

= B - f i  (5.117) 

For technical reasons which will become clear soon, we introduce a 
Cartesian coordinate system (s on R 2, rotated b v an angle n/4 
with respect to the original (x~,x,) ,  i.e., x l = ( 1 / x / 2 ) ( Y ~ - . ~ 2 )  and 
.xh=(1/~/~)(:71+.f2). Denote V j - 8 / a s  For any r  2) and any 
A c R 2 one has the trivial equality 

\ a x , )  \ax2)  J . \a.~,) t.a~,_) i 
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from which one concludes that  Z2=,  V ~ z , t V , = Z ~ = ,  V]zAVj. These 
remarks allow us to write an inequality which is the analog of (5.117): 

A < ~ B - 5  (5.118) 

where 

][ ] ~=_ ~ im t im 
J = '  ~ + ( - i V j )  Zf ~ + ( - i V j )  

2 2 * m c3Z~ 
~=,n X~,,+ [ vjx~,,,)v~--- A E a.~j 

j = l  , ~ Z j =  I 

Combining (5.117) and (5.118) gives 

A < ~ � 8 9 1 8 9  (5.119) 

Next we use the Peier ls-Bogoliubov inequality, which says that  for 
any convex function f ( x )  the mapping  B--* Tr  f (B )  is convex on operators.  
For  f ( x ) = x " ,  which is convex on R +, Vn ~> 1, we get 

Tr[  �89 +/~)  C~]"=Tr[�89189 . c~r ) ,/._~( cr),/2],,., 

~ < l T r [ ( c r ) t / 2  r 1/2 ,, , r ,/2 - r i/2_ ,, _ . B(C.,.) ] + ~ T r [ ( C  s)  B(C~) ] 

= ~ T r ( B C r ) , , +  i - r ,, _ . ~ Tr(BC.,. ) (5.120) 

Lemma 4 then follows from (5.119), (5.120), the elementary proper ty  of the 
trace, which says that  0 ~<A ~< B and C~>0 imply Tr(AC)" <~Tr(BC)", and 
from the following two results: 

L e m m a  5 (Bulk effects). The following inequalities hold: 

Tr(BC~)" ~<C--K lYl 
II 

Tr B r , ,<C x ( c, .  ) lyl 
n 

k e m m a  6 (Boundary effects). Under  the hypothesis of Proposi-  
tion 3 the following inequality holds: 

6+3~>0 (5.121) 
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R e m a r k .  The reason for introducing the coordinate system (g,,.?2) 
is that it turns out to be much easier to prove that 6 + 6>/0 than just a >/O. 

Proof of Lemma 5. From the definitions, we have 

Tr(BC,,,r) " =  Z Tr{ [im/x/c2+(-iVj,)]*x~[im/v/~+(-iVj,)] C~ 
J l  "" " i n  

x Jim/v/2+ (--iVk)]* z;[i,n/v/2+(--iVk) ] C T 
X . . .  

x [im/x/~-+( -iVj,,)]*z~[im/v/2+ ( -- iVj,,)] C.,, r} 

(5.122) 

Note that X~(x)=O when x is on the boundary OF of the polymer; 
therefore, we can pass the operators Vj and V] through the characteristic 
functions Xx, in the formula (5.109) for the propagator C r.,.. Namely 

F im + iVj)] r Fim * 7 (- c , [7+(- ivk) l  x,, 

[ i~2 2 ][ ( e-F'/" ~ ] =z,, +(-;v,/ X 2 V z., 
a L ~ o f X  1 = 1  

[ #n i t  x [ ~ + ( - i V k ) X ~  

=Zp {~o~X a'(rt  ) ,=1 ~ Xxt[/i'n~----~){-~',x/L+py/',-v'z \ /  it,, +Pk)p2+m2 je-p'-/~lvZx~}Z;. 

=x~.C~'"Zr. (5.123) 

Denote by fir..,, the operator on L2(R2)| 2 defined by (_Cr''g))j - 
E~-=, C~''~bk, for r  q~z)~L2(~-')| '. Let 

;#,,/,A 
Ip(m)> - tim~v~ ~ + p2/ 

and Ip(,n)><p(m)l be the orthogonal projection on this vector in C 2. We 
rewrite _C r- ' as 

~, ( i e -  rz/h v C- r''= ~ at(~z) X,,; Ip(m)><p(n)l | T,,, Xx, (5.124) 
f fon X / =  I 

and now the initial trace on L z can be written as a trace on L-'| 

Tr(BC.,.r),,=Tr ~ r.., 7-..,. ...x-CT'." z~.Cj, j ._x~Cj:j ,z~ ,. j,,j, 
Jl "" "J , ,  

_ , T , s ,  T , s  . s --TrL.,| x~C_ X~ "'x~C- r" (5.125) 
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Remark that (p(m) J p(m)) = p2  .at_ m 2 implies 
( p 2  + m 2) ~ c 2- Next define ~r,.,. >1 C_r,, by replacing 
(P 2 +m2) ~c:: 

Lemberger 

Ip(m)}(p(m)l  <~ 
[p(m)}(p(m)[ by 

c_r'~<~C_ r''~- • ar~(n) ~ Zxl~c,| (5.126) 
n o n X  / = l  

The aim of all these manipulations was to produce the operator (e -p'/K) v, 
which has a positive kernel (e -p'/~) v (x, y) > 0. This allows us to remove 
the nasty s-parameters! Namely, define 

~ = ~ c2 | (e-P"/~) ~ >/0 (5.127) 

From Z ,  orxa.r(zr)= 1 we deduce the pointwise inequality 

0 ~< _~r' ~(x, y) ~< _~(x, y) (5.128) 

Now from (5.125) and using successively (5.126) and (5.128), we obtain 

T j, 15.126} .v)r ~ T , s  s 
Tr(BCs) ~< Trt,.| r' ~. �9 . . . . X ~ _  r" 

(5.128} 

15.128) 
~< Tr L2| c_, z;_C" 

= 2 Tr z;(e -,C/~-) 

~< 2 f~ (e -,C-/~) ~ (x, x) dx 

, l _ ~ f ,  e_,,p,/,,.dp = 2 l~l (2re)- ~: 

1 ~<~ I~l K--~<--CK Irl (5.129) 
n 11 

The case where /~ replaces B is identical. The components of the vector 
jp(m)} are now /~i in the new coordinate system, but obviously 
y,~=} ( f f j ) 2 = ~ =  l (pj)2=p2. | Lemma 5 

Proof of Lomma 6. We have to show that (~b,(6+6)~b)>~0, 
u 2, dx), when L is large enough and 1/ is small enough. We 
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X 

i(7) . . . . . . . . . . . .  

~ -  -,-] ...... 

Y 
llm 

Fig. 4. An edge and an exterior comer of B(y). 

decompose the operators ~ and 6 into contributions from the edges and 
the corners of ~ in an obvious way (see Fig. 4): 

6= Z 6~+ Z ~ (5.130) 
edges corners 

and likewise for (~. Consider first an edge of length I/m and of width 
r2>L/m>O. From the definition (5.117) and supposing that x = r  a 
corresponds to the edge of B(y), we have [with the trivial change of 
variables x' = re(x- r2) -t- L, y'  = my, and ~'(x', y ')  = ~b(x, y) ]  

r"' (a+V+ r (+'~o+):.o +{f::ax[ t, ax l  kay) 

Now fix 4b'(L, y ')  for all y'  ~ [0, l] and consider 

] inf (x', y')+Cb2(x', y ') dx '= inf F [~ ]  (5.132) 
r rbtL, y') faxed \ a x ' J  r r y') nxed 

The infimum ~ is in particular a stationary point and thus satisfies 

,~F 82q~ 
0 = 6~b(x, ' y,) [8]  = -ax,---5(x', y')+~Z(x', y') (5.133) 

[ lac,",'- (ar t'O--~x') +\ay'J ++,2(x,, y,) ] __~+I ,2(L, y')} 

[ t ~ /  ~,/,'-'(L, 

822/79/3-4-5 
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whose solutions are ~b'(L, y')e +-(L-x'~. By inspection one verifies that 
$'(L, y') e ~c-x') is not a minimum. In conclusion, 

~(x', y ' ) =  q~'(L, y ' )  e -~L-x'l (5.134) 

We can thus bound the x'-integral in (5.131), 

F[qY]---~2 ~b'2(L, y')>~qb'2(L, y') {I~ [e-2'L-'~') +e-E'L-x"] dx'---~2 } 

( )) - - ~ ' 2 ( L , y ' )  l - e  -EL > 0  (5.135) 

The case 6 is completely similar except for the term 1/~/2 in (5.131), which 
is replaced by 1 because on an edge of f one has 

j = l  j = l  

Collecting all results above, we conclude that if L is large enough, then 

dyCE(r2, y) 1 - 2 e  -EL >/0 (5.136) 
~0  

The treatment of corners is similar if we use polar coordinates. Consider 
first an external corner and suppose r = r 2 corresponds to the edge of B(),) 
and recall that r 2 = r  ~ + L / m = ( 1  + q ) r ~ .  Using the change of variables 
r' =m(r-r2)+L, ~'(r', ~o)-- r q~), we have 

(r 6r ~> drp d r r  + q- m2g~ 2 
oo -, k \o,-) "- t,o<n) 

- ~  r,(Icos ~ol + Isin ~01) ~e(r , ,  ~o) 
x/2 - _ 

r2 {s2 ] >_.,,,r, ""'L ++'' 

1 + ,,# (Icos ml + Isin </'1) 4,"-(L.. </,)} (5.137) 

As before, for a fixed ~b'(L,~0) the r'-integral is minimized by 
~(r', q~) = ~(L, ~p) e -~L-~'~, from which we conclude that 

[ 1 + q (Icos ~ol + Isin ~ol)1 (5.138) { - . .  } ~>r r p ) 1  -- e-2t- - - - - ~  - 
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For 6c the function Icos r + ]sin rp] is replaced by Icos(q~-~/4) I + 
Isin(cp-~/4)1, because of the change of orientation of (97~, 97 2) coordinate 
system. Now it is clear that 

1 ( ; )  ( ; ) ]  
f (~o ) -~ [ l cosq~ l+ l s in~o l+  cos cp-  + sin ~p- ~<a<x/~ 

(5.139) 

Thus, provided L is large enough and r/small enough, we have 

r [ ] (~,(~+fi~)~)>~mrl  d~o~2(r2,~o) l _ e _ 2 L  ( l + q )  -o ~ f(~o) >~0 

(5.140) 

For an internal corner there is no boundary term like ~2(r 2, q~) and thus 
6 and ~ are both obviously positive. | Lemma 6 I Lemma 4 
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